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1 NOTATIONS AND PRELIMINARIES

1.1 A drop of complex analysis
1.1.1 The space of Jordan curves

Let consider

J = {I'cC, TI'is a Jordan curve},

J>* = {I'cC, I'isa C* Jordan curve}.
Facts :

e 'cJ«— 3¢:S'— C continuous and injective s.t. ¢(S') =T ;

e Let h € Homeo(S'), then ¢ and ¢ o h are parametrizations of the same
Jordan curve I

1.1.2 Riemann mapping theorem

e I splits the complex plane into two domains Df" and Dy :
Ft

e Let D := {2z € C, |z] < 1}, the Riemann mapping theorem ensures

that :
J FT : D — D biholomorphic, unique mod SU(1, 1),
3 F~ : D — Dy biholomorphic, unique mod SU(1, 1),
where
SU(1,1) := Poincaré group of automorphisms of the disk

~ restrictions to S' of homographic transformations
az+b

T — ‘&’2 - ‘b’2 =L
bz +a

Z
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e By a theorem of Caratheodory, the maps F* extend to homeomor-
phisms : o o
F+:E—>DF, F_ZDHD;;

e in particular, Ffstl define (canonical) parametrizations of I ;

e we have

gr ‘= (F_)_l © F\§1

€ Homeo(S') (orientation preserving).
1.2 A touch of algebra
1.2.1 The Lie group Diff(S') and its Lie algebra

Diff(S') := the group of C*°, orientation preserving
diffeomorphisms of the circle

0iff(S') := Lie algebra of right invariant vector fields on Diff(S')

C™ functions on S' via the identification

u € C*(S',R) «— vector field u-;

Lie bracket given by [u, v]ugjst) = ut — v

12

2ff(S1) = {u € iff(SY), % / w(0)do = 0}

st
1.2.2 Central extensions of Diff(S') and Virasoro algebra
The central extensions of Diff(S!), that is
1 - A - FE? — Diff(S") — 1, AcC Z(F)
or equivalently
0 - a — e¢? — Diff(S) — 0,
have been classified by Gelfand-Fuchs. They are of the form
Ver = RG0iff(S'),

and are associated to a fundamental cocyle on diff(S!) :

C

cunll)= [ [(n=55) 5 =5 o 0.

where ¢, h > 0, via

[O”{ + f7 ﬁ’i + g]Vc,h = w(f? g)’i + [f? g]ﬂiff(Sl)‘
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2 SOME PROBABILISTIC AND ALGEBRAIC
MOTIVATIONS FOR THE INTRODUCTION OF
BROWNIAN MOTION ON DIFF(S!)

2.1 Brownian motion on some quotient spaces

2.1.1 Brownian motion on the space of Jordan curves

Theorem 1 (Beurling-Ahlfors-Letho, ~ 1970, conformal welding). The ap-
plication

J* — Diff(S!), T gr=(F7)" o F

is surjective and induces a canonical isomorphism :

J>* — su(1, 1)\DPiff(8)/su(1, 1)

[dea : to construct a Brownian motion on J>°, a first step consists in defining
a Brownian motion on Diff(S') and pray that the construction passes to the
quotient !

2.1.2 The space of univalent functions

In the same spirit, consider
U® = {f € C>°(D,C), f univalent s.t. f(0) =0, f'(0) =1}.

To f € U™, one can associate I' = f(S') € J> :

,(//

The Riemann mapping theorem provides a biholomorphic mapping hs such
that _
hf ZC\]D)—>DI:, hf(OO):OO.

It is unique up to a rotation of C\D, i.e. up to an element of S' and extends
to the boundary :

hy: C\D — Dy, h¢(o0) = o0.
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Using this construction, we thus have an application

U>* — Diff(S"), frgr=flo Pgigr-
Theorem 2 (Kirillov, 1982). The application

U = DIfl(S"), [ gr=f"ohse
induces a canonical isomorphism :

U> — Diff(S") /g1

Idea : as before, the construction of a Brownian motion on U appears
closely related to the construction of a Brownian motion on Diff(S')...

2.2 Representations of the Virasoro algebra
Facts :

e The theory of Segal and Bargmann shows that the infinite dimensional
Heisenberg group ‘H has a representation :

where H is an Hilbert space and v a Gaussian measure ;

e a similar Gaussian realization was proved by Frenkel in the case of Loop
groups.

Question :
Does there exists a space M, a measure u, and a representation of the Vira-
soro algebra of the following form 7

Ver — End (L ,(M, 1)), u p(u).

e Heuristics : M := Diff(S')/SU(1,1) is a good candidate. It carries a
canonical Kahlerian structure, associated to a Kéhler potential K such
that 00K = w., ;

e heuristics again : the measure p should look like :

p = coexp (—K) dvol.

e [dea : realize y as an invariant measure for a Brownian motion + drift
on M, with infinitesimal generator :

1
G = §A - VKV.

Up to technical difficulties, this method works !
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3 BROWNIAN MOTION ON THE
DIFFEOMORPHISM GROUP OF THE CIRCLE

3.1 Canonical horizontal diffusion
3.1.1 The notion of stochastic development

Given a differentiable structure M, the canonical way to define a brownian
motion on M is to do a stochastic development of a diffusion living on the
tangent space 7'M to M, that is :

(7) first define a brownian motion on the tangent space TM ;

(7) then “roll it without slipping” from T'M to M.

_ diffusion on the tangent space T'M

_ diffusion on the underlying manifold M

Remarks :

(7) the notion stochastic development, i.e. “roll without slipping”, implies
a pre-existing metric structure on the manifold M, i.e. on T M ;

(77) the resulting process on M will inherit from the invariance properties
of the metric choosen on T'M.

To define a Brownian motion on Diff(S'), we thus have to :
(1) choose a metric structure on Diff(S') ;
(1) construct a Brownian motion on iff(S') ;

(#ii) roll it without slipping on Diff(S') via the exponential mapping.
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3.1.2 How to choose a metric on Diff(S') ?

Theorem 3 (Airault, Malliavin, Thalmaier). There exists, up to a multi-
plicative constant, a unique Riemannian metric on

su(1,1)\Diff(8")/su(1, 1)
which is invariant under the left and right action of SU(1,1).

Theorem 4. There exists a canonical Kéhler metric on &> ~ Diff(S')/S!,
i.e. on Diffy(S'). Tt is associated to the fundamental cocycle w,, defining the
Virasoro algebra :

[u|)? := wen(u, Ju).

Here 0iffy(S') ~ {u € C*(S'), [, udf = 0}, and

u(@) = S (ay cos(k) + by sin(k6))
Ju(f) = 2 (—ay, sin(k6) + by cos(k0))
Wep(u, Ju) = SN a2(af+b2), of:=(hk+5(k*—k)).
e The metric ||.|| is invariant under the adjoint action of S ;

e the sequence oy, grows like £%/2, thus

(0iffo(SY), I[.I) ~ HY*(S") ;

e an orthonormal system for (0iff,(S*),]].]|) is, for & > 1 :

eop—1(0) :== M, eor(0) = sin(k@)'

(6973 (693

3.1.3 Brownian motion on ?iff(S')

Definition I.1 — The Brownian motion on iff(S') (with H3? structure)
is the solution of the following Stratonovitch SDE

dZ,(0) = (ean-1(6) 0 dX} + ea(0) 0 dY}).

k>1

where X* Y* kL > 1 are independant, real valued, standard Brownian mo-
tions.

Remark : almost surely, the above series converges uniformly on [0, 7] x S*.



8 Brownian motion on the space of univalent functions via BM (Diff(S!))

e The stochastic development of the diffusion Z; on 9iff(S') to a Brownian
motion g; on Diff(S') writes formally :

(*) dgt = (OdZt) Gt go = Ida

in other words

dg, = Z (62k71(gt) o dX[ + ear(ge) © dYtk> ;g0 =1d.

k>1

e Problem : the classical Kunita’s theory of stochastic flow works with
a regularity H3/>*¢ for any € > 0, but not in the critical case H>/2.

3.2 Construction via regularization
3.2.1 Regularized Brownian motion on 0iff(S!)

Malliavin’s approach of the problem is to regularize the horizontal diffusion,
i.e. consider the following SDE for 0 <r < 1:

dZj(0) = Y yor " (e2n-1(0) 0 dXF + eai(0) 0 YY) |

(*)7’
dg; = (odZ])g;, gy =1d.

Theorem 5 (Airault, Malliavin, Thalmaier). For any 0 < r < 1, the equa-
tion (%), admits a unique solution ¢ — g/ € Diff(S'). The limit g,(0) :=
lim,_,; g/ (f) exists uniformly in § and defines a solution of (x).

The limit g; € Homeo(S') only !

3.3 An alternative pointwise approach
3.3.1 The pointwise approach by S. Fang

Fang’s approach of the problem is to consider the following approximating
SDE’s, forn > 1 :

Az} (0) = 32—y (e2n-1(0) 0 X[ + e (0) 0 dY/F)

(*)n
dgp = (odZ}) gy,  g¢ =1d.

Theorem 6 (Fang). For any n > 1, the equation (%), admits a unique
solution ¢ — g € Diff(S'). For 6 given, the limit ¢,(0) := lim, . g(6)
exists uniformly in [0, 7] and defines a solution of equation ().
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Theorem 7 (Fang). There exists a version of g; such that, almost surely,
g: € Homeo(S!) for all . Moreover, there exists ¢y > 0 such that

19:8) = g(8)] < Cul§ — 0|

In other words, the mappings g; are d;-Holderian homeomorphisms with o,
going to zero when ¢t — +o0.

Morality : Brownian motion on Diff(S') with its /%2 metric structure must
be realized in the bigger space Homeo(S').

4 BROWNIAN MOTION ON THE SPACE OF
UNIVALENT FUNCTIONS

Our goal : construct a Brownian motion on U*°, the space of univalent
functions, starting from the Brownian motion on Diff(S!).

The two main steps :

(1) starting from the Brownian motion on diff(S'), use the Beurling-Ahlfors
extension to construct a stochastic flow of diffeomorphisms of the unit
disk ;

(77) use stochastic conformal welding to get a Brownian motion on the space
of univalent functions.

The classical theory of conformal welding is well developed for diffeomorhisms
of the circle that have a quasi-conformal extension to the unit disk. The class
of diffeomorphisms preserving the point at infinity and admitting a quasi-
conformal extension to the half-plane is caracterized by the quasi-symmetry
property :

h(0+6") — h(&)

sup < 00.
o.est h(0) — h(0 —¢")

Theorem 8 (Airault, Malliavin, Thalmaier). Almost surely, the Brownian
motion g; on Diff(S') does not satisfy the above quasi-symmetry property.
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4.1 Beurling-Ahlfors extension
4.1.1 Beurling-Ahlfors extension

e Smooth vector fields on the circle are of the form w(0)d/df where u €
C>(S') ~ C2(R).

e Given u € C*(S'), Beurling-Ahlfors extension provides a vector field
UonH:={(=x+iyeC, y>0}via:

U€) =U(x +iy) := /u(x — sy)K(s)ds — 6z/u(a: — sy)sK(s)ds,

where
K(s) == (1—1s]) Li_1,1(s)-
In Fourier series, if u(x) = >.°° _¢,e™, then
+o0
U)=U(x+iy) = Z Cn <K(ny) + 6K’(ny)> eine,
where /) )
=~ sin(&/2
K&)=———=1) .
o= (")

Consider the chart ( — 2z = exp(i(), denote log™(a) := max{0, —log(a)},
and define

U(z) =izU(C)

=iz ( Z Cn <IA((n log™ (]2])) + GK'(nlog_(M))) einx)

n=—oo

Proposition 1. Given u € L2(S!), the vector field U vanishes at the origin
z=0an is C! in the unit disk D.
4.1.2 From the circle to the disk

We now apply the preceding machinery to the stochastic flow (u¢)i>o on
0iff(S'). The complex version of u; simply writes :

w(0) == > e (0)X7,

nez\{0}
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where
inf

o - 2 _ € (1n13
en(0) := p— with o, = <h|n| + E(\n\ - |n|)> :

X', n# 0, are independant Brownian motions.

e We thus obtain a flow ﬁt of C'* vector fields on the unit disk ID, vanishing
at zero :

Oi(z) =iz | Y. (Knlog™(l21) + 6K (nlog™(|21)) ) enlw) X7
nez\{0}

e At this stage, it is possible (rhymes with technical) to control the
covariance of the resulting process, i.e. to control the expectations
E[U(2)U(2")], E[QUi(2)0U(2")]...

4.1.3 Stochastic development again

It is then possible to integrate the development equation :
() db, = (dl,) ¥y, o =Td

Theorem 9 (Airault, Malliavin, Thalmaier). The equation (*) defines a

unique stochastic flow W, of C!, orientation preserving, diffeomorphisms of
the unit disk . Moreover,

lirq 0, (pew) = ¢;(6) uniformly in 6,
p—

where g; is the solution of ().

The resulting process U, effectively extends the Brownian motion on Diff(S!)
to the unit disk .

4.2 Stochastic conformal welding

The idea here is to factorize the flow \Tlt via conformal welding to obtain
a diffusion taking values in the space of univalent functions. However, in
reason of theorem 8, the stochastic conformal welding can not be performed
in a brutal way. The good idea is to stay away from the boundary of D, and
perform the conformal welding strictly inside the unit disk :

(i) factorize the diffusion W, in a disk of radius p < 1 ;

(77) investigate the limit of each factor when p goes to 1.
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4.2.1 Stochastic Beltrami equation
For 0 < p <1, let D, := pD and
oV,

—=(2) if 2 €D,
/()= 4 OV

0 otherwise.

Now let FY be a solution of the following Beltrami equation, defined on the
whole complex place C : -
OF!
Sr(2) = v (2).
t

We normalize the solution by the conditions
0.Ff(z)—1€LP, F/(0)=0.

Theorem 10. Let U, the solution of equation (¥), i.e. the extension of g; in
the unit disk. Define

ftp(z) = Ftp © (Ejt)_l(z)’ KAS \Dt(DP>a

9:(2) = F{(2), ¢ Wy(D,).
Then _
f{ is holomorphic and univalent on ¥;(D,),
g¢ is holomorphic and univalent on <\Tft(Dp)> )
and

()Mo gl(z) = Wi(2), =€ I,

4.2.2 Brownian motion on U
As announced, we now look at the limit of ff when p goes to 1.

Theorem 11. For each 0 < r < 1, the limit

¢i(2) := lim f7

p—1
exists uniformly in z € D, and defines a univalent function ¢; in D.

It is known that if a sequence of univalent functions converges on compact
subsets of D to a non constant function ¢, then ¢ is univalent in ). On the
contrary, univalence on the boundary needs an extra assumption :

(H) ¢ is continuous and injective on D.



Theorem 12. Suppose that the function ¢, satisfies (H), then there exists
a function h; univalent outside the unit disk ID such that :

(¢t)71 oy (ew) =0t (eie) )
where g; is the solution of (x), i.e. the Brownian motion on Diff(S!).

In other words, the Brownian motion on Diff(S') can effectively be factorized
to get a Brownian motion on U, the space of univalent functions.

4.3 Some properties of the resulting process
4.3.1 Area of the random domain

Is it possible to obtain quantitative informations on the shape of the image
of the unit disk by the mapping ¢; ?

Theorem 13. Let A7 be the area of F/’(D,). Then, there exist constants ¢y,
o, 3, independent of p < 1 such that

R2
P [ sup log(AY) — 1T >ca+ R| <exp (—03—)
te[0,7 T
Letting p go to one, we thus get :

Theorem 14. Let A; be the area of ¢;(ID). Then, there exist constants ¢y,
C9, c3 such that

R2
P | sup log(A;) — T >co+ R | <exp (—03—)
te[0,T] T

4.3.2 Back to the Brownian motion on Jordan curves

Theorem 15. Let ¢; be the stochastic flow of univalent functions defined
in theorem 11. Then ¢ — ¢;(S!) defines a Markov process with values in 7,
the space of Jordan curves.
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