Construction and asymptotics of relativistic diffusions on Lorentz manifolds

Jürgen Angst

Section de mathématiques Université de Genève

Rencontre de l'ANR Geodycos UMPA, ÉNS Lyon, April 29 2010

Motivations

There are deep links between the short-time and long-time asymptotics of Brownian motion on a Riemannian manifold and its geometry. This makes the heat kernel a powerfull tool in many analytic and geometric problems.

Does there exists similar links in a Lorentzian setting?

- What is a Brownian motion on a Lorentz manifold?
- Does its study teach us something on the geometry of the underlying manifold?

- Construction of a relativistic Brownian motion
 - Relativistic diffusion in Minkowski space-time
 - The case of a general Lorentz manifold
- Asymptotics of the relativistic diffusion
 - The case of Minkowski space-time
 - The case of Robertson-Walker space-times
 - The notion of causal boundary
- 3 Poisson boundary of the diffusion
 - The case of Minkowski space-time
 - The case of Robertson-Walker space-times

Relativistic diffusion in Minkowski space-time

Minkowski space-time and hyperbolic space

We denote by $\mathbb{R}^{1,d}:=\{\xi=(\xi^0,\xi^i)\in\mathbb{R}\times\mathbb{R}^d\}$ the Minkowski space-time of special relativity, endowed with the metric :

$$q(\xi) = \langle \xi, \xi \rangle := -|\xi^0|^2 + \sum_{i=1}^d |\xi^i|^2,$$

and by \mathbb{H}^d the positive part of its unit pseudo-sphere :

$$\mathbb{H}^d := \{ \xi \in \mathbb{R}^{1,d} \, | \, \xi^0 > 0 \text{ and } \langle \xi, \xi \rangle = -1 \}.$$

Basic facts on stochastic process

A continuous stochastic process X, with values in a differentiable manifold $\widetilde{\mathcal{M}}$, can be seen equivalently as :

a random variable

$$X: (\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \left(C(\mathbb{R}^+, \widetilde{\mathcal{M}}), \mathcal{B}\right)$$

 $\omega \mapsto X(\omega) = (s \mapsto X(\omega)(s) = X_s(\omega)),$

and thus a probability measure on $C(\mathbb{R}^+,\widetilde{\mathcal{M}})$;

• a family of probability measures $(\mathbb{P}_z)_{z\in\widetilde{\mathcal{M}}}$, where the support of \mathbb{P}_z is the set $\{f\in C(\mathbb{R}^+,\widetilde{\mathcal{M}}),\ f(0)=z\}$, *i.e.* \mathbb{P}_z is the law of sample paths starting at $X_0=z$.

Geometric characterization of the Euclidian BM

Proposition

Among the processes with values in \mathbb{R}^d , the Brownian motion is the unique process that satisfies the three following properties :

- it is Markovian;
- its sample paths are continuous;
- its law is invariant under the action of Euclidian affine isometries, *i.e.* $\forall \phi \in \text{Isom}(\mathbb{R}^d)$, A measurable :

$$\mathbb{P}_0(A) = \mathbb{P}_z(z+A), \quad \mathbb{P}_0(A) = \mathbb{P}_0(\phi(A)).$$

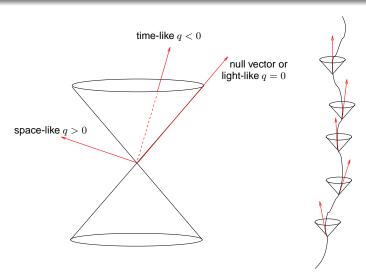
The end of the talk?

Theorem (Dudley, 1966)

There is **no** process with values in $\mathbb{R}^{1,d}$, being both

- Markovian;
- continuous;
- and whose law is Lorentz-covariant.

Nature of trajectories in Minkowski space-time



Towards a relativistic Brownian motion

Question: does there exist a stochastic process with the following properties?

- It is Markovian;
- its sample path are continuous, future-directed and time-like, i.e. they are continuous in $\widetilde{\mathcal{M}}=T^1_+\mathbb{R}^{1,d}\simeq\mathbb{R}^{1,d}\times\mathbb{H}^d$;
- its law is Lorentz-covariant.

Such a process will be called a *relativistic Brownian motion* or simply a *relativistic diffusion*.

Towards of relativistic diffusion

Theorem (Dudley, 1966)

There exist a unique process $(\xi_s, \dot{\xi}_s)_{s \geq 0}$ with values in $T^1_+ \mathbb{R}^{1,d}$ that satisfies the preceding conditions, it is obtained by taking for $\dot{\xi}_s$ a Brownian motion in \mathbb{H}^d and its primitive

$$\xi_s := \xi_0 + \int_0^s \dot{\xi}_u du.$$

Conclusion of the Minkowskian case

 Relativistic diffusions make sense at the level of the unitary tangent bundle of a Lorentz manifold, not in the base space.

• By construction, the relativistic diffusion $(\xi_s, \dot{\xi}_s)_{s \geq 0}$ is a continuous process in $T^1_+ \mathbb{R}^{1,d}$, hence its first projection $(\xi_s)_{s \geq 0}$ with values in $\mathbb{R}^{1,d}$ has a C^1 regularity.

Relativistic diffusions on a general Lorentz manifold

Relativistic diffusions on a general Lorentz manifold

In 2007, Franchi and Le Jan extend Dudley's work by constructing, on a general Lorentz manifold \mathcal{M} , a process $(\xi_s, \dot{\xi}_s)_{s>0}$

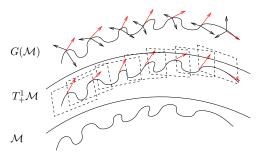
- with values in $T^1_+\mathcal{M}$;
- which is Markovian and continuous;
- and whose law is Lorentz-covariant.

The process resulting from their construction we be simply called *relativistic diffusion* in the sequel.

Geometric description of the construction

Generalization of Dudley's work via parallel transport

The relativistic diffusion is constructed as the projection of a diffusion on the frame bundle $G(\mathcal{M})$, using a kind of "vertical lift".



Equivalently, it is obtained starting from Dudley's diffusion on a fixed tangent space using stochastic parallel transport.

Geometric description of the relativistic diffusion

Let $\mathcal M$ be a Lorentz manifold, $(\xi_0,\dot{\xi}_0)\in T^1_+\mathcal M$, and $(\xi_s,\dot{\xi}_s)_{s\geq 0}$ the process starting from $(\xi_0,\dot{\xi}_0)$ resulting of the Franchi and Le Jan's construction.

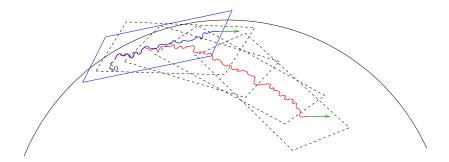
Theorem / Definition (Franchi-Le Jan, 2007)

If $\overleftarrow{\xi}(s): T_{\xi_s}\mathcal{M} \to T_{\xi_0}\mathcal{M}$ denote the inverse parallel transport along the C^1 curves $(\xi_{s'} \mid 0 \leq s' \leq s)$, then $\zeta_s := \overleftarrow{\xi}(s) \dot{\xi}_s$ is an hyperbolic Brownian motion in $T^1_{\xi_0}\mathcal{M} \simeq \mathbb{H}^d$.

Stochastic anti-development

—— Dudley's diffusion in $T_{\epsilon_0}^1 \mathcal{M} \approx \mathbb{H}^d$

_____ Relativistic diffusion



Dynamical description

The notion of infinitesimal generator

Fact : there is a correspondence between diffusion processes $(X_s)_{s\geq 0}$ with values in a manifold \mathcal{M} and differential operators \mathcal{L} , of order 2, acting on $C^{\infty}(\mathcal{M}, \mathbb{R})$.

The links between processes and operators is the following:

$$\mathcal{L}f(x) := \lim_{s \to 0} \mathbb{E}_x \left[\frac{f(X_s) - f(x)}{s} \right].$$

Besides, $(X_s)_{s\geq 0}$ is a solution of the stochastic differential equations system associated to \mathcal{L} .

Generator of the relativistic diffusion

In the case on the relativistic diffusion $(\xi_s,\dot{\xi}_s)_{s\geq 0}$ with values in $T^1_+\mathbb{R}^{1,d}$ introduced by Dudley, the operator $\mathcal L$ associated to the process is given by :

$$\mathcal{L}f(\xi,\dot{\xi}) := \underbrace{\dot{\xi}\,\partial_{\xi}f(\xi,\dot{\xi})}_{\mbox{geodesic flow}} + \frac{1}{2}\,\, \underbrace{\Delta_{\mathbb{H}^d}f(\xi,\dot{\xi})}_{\mbox{perturbation}} \; .$$

Dynamical description of the relativistic diffusion

By definition, the infinitesimal generator $\mathcal L$ of the relativistic diffusion introduced by Franchi and Le Jan decomposes into a sum :

$$\mathcal{L} := \mathcal{L}_0 + \frac{1}{2} \, \Delta_{\mathcal{V}},$$

where

- L₀ is the generator of the geodesic flow;
- $\Delta_{\mathcal{V}}$ is the vertical Laplacian.

Dynamical description of the relativistic diffusion

By definition, the infinitesimal generator $\mathcal L$ of the relativistic diffusion introduced by Franchi and Le Jan decomposes into a sum :

$$\mathcal{L} := \mathcal{L}_0 + \frac{1}{2} \Delta_{\mathcal{V}},$$

where

- L₀ is the generator of the geodesic flow;
- $\Delta_{\mathcal{V}}$ is the vertical Laplacian.

A more down-to-earth description

Given a local chart ξ^μ on $(\mathcal{M},g_{\mu\nu})$, the relativistic diffusion on $T^1_+\mathcal{M}$ is the solution of the stochastic differential equations system :

$$(\star) \begin{cases} d\xi_s^{\mu} = \dot{\xi}_s^{\mu} ds, \\ d\dot{\xi}_s^{\mu} = -\Gamma_{\nu\rho}^{\mu}(\xi_s) \dot{\xi}_s^{\nu} \dot{\xi}_s^{\rho} ds + \frac{\dim(\mathcal{M})}{2} \dot{\xi}_s^{\mu} ds + dM_s^{\mu}, \end{cases}$$

with

$$d\langle M^{\mu}, M^{\nu}\rangle_s = \left(\dot{\xi}_s^{\mu}\dot{\xi}_s^{\nu} + g^{\mu\nu}\right)ds.$$

Morality

- The relativistic diffusion on a general Lorentz manifold M can be seen as the stochastic development of Dudley's diffusion in Minkowski space-time;
- The flow associated to its generator is a perturbation of the geodesic flow on $\mathcal M$ by the vertical Laplacian.

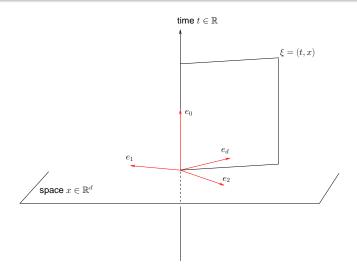
The case of Minkowski space-time The case of Robertson-Walker space-times The notion of causal boundary

Asymptotics of the relativistic diffusion

The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

The case of Minkowski space-time

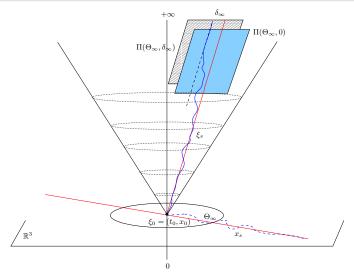
Minkowski space-time



The case of Minkowski space-time

The case of Robertson-Walker space-times
The notion of causal boundary

Typical sample path of the relativistic diffusion



Theorem (Bailleul 08)

Let $(\xi_0, \dot{\xi}_0)$ be a point in $T^1_+\mathbb{R}^{1,d} \simeq \mathbb{R}^{1,d} \times \mathbb{H}^d$ and $\mathbb{P}_{(\xi_0, \dot{\xi}_0)}$ the law of the relativistic diffusion $(\xi_s, \dot{\xi}_s)$ starting from $(\xi_0, \dot{\xi}_0)$.

Then $\mathbb{P}_{(\xi_0,\dot{\xi_0})}$ –almost surely, there exists

- a random limiting angle $\Theta_{\infty} \in \mathbb{S}^2$,
- ullet a random plane $\Pi(\Theta_{\infty}, \delta_{\infty})$,

such that, as s goes to infinity, the process ξ_s tends to infinity in the direction Θ_{∞} along $\Pi(\Theta_{\infty}, \delta_{\infty})$.

Robertson-Walker space-times

Robertson-Walker space-times

These spaces are cartesian products $I \times M$ where

- *i*) I = (0, T) is an interval of \mathbb{R} ;
- *ii*) M is an homogeneous and isotropic Riemannian manifold, $i.e.\ M=\mathbb{S}^3,\ \mathbb{R}^3,\ \text{ou}\ \mathbb{H}^3.$

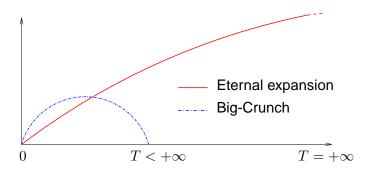
endowed with a metric of the form:

$$ds^2 = -dt^2 + \alpha^2(t)d\ell^2.$$

where α is a positive function on I and $d\ell^2$ is the usual Riemannian metric on M.

These manifolds, denoted by $\mathcal{M}:=I\times_{\alpha}M$, are the natural geometric framework for the theory of Big-Bang.

Expansion functions considered



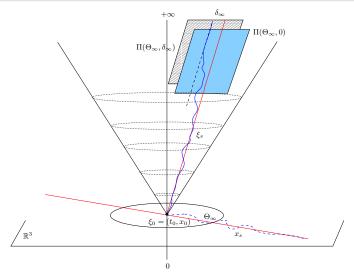
Existence, uniqueness, lifetime

Proposition

Let $\mathcal{M}=(0,T)\times_{\alpha}M$ be a Roberton-Walker space-time, and $(\xi_0,\dot{\xi}_0)\in T^1_+\mathcal{M}$. The system (\star) that defines the relativistic diffusion admits a unique strong solution $(\xi_s,\dot{\xi}_s)=(t_s,x_s,\dot{t}_s,\dot{x}_s)$ starting from $(\xi_0,\dot{\xi}_0)$. This solution is defined up to the explosion time $\tau:=\inf\{s>0,\ t_s=T\}$.

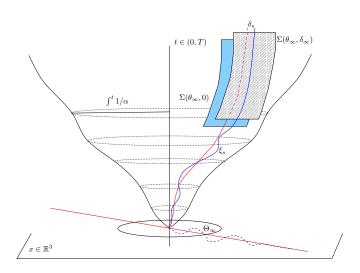
Asymptotics of the diffusion in Robertson-Walker space-times

Reminder of the Minkowskian case



The case when
$$M=\mathbb{R}^3$$
 and $\int^T \frac{du}{\alpha(u)}=+\infty$

The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary



Theorem

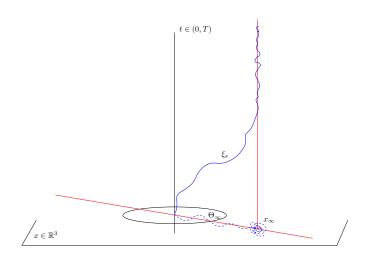
Let $(\xi_0, \dot{\xi}_0)$ be a point of $T^1_+\mathcal{M}$ and $\mathbb{P}_{(\xi_0, \dot{\xi}_0)}$ the law of the relativistic diffusion $(\xi_s, \dot{\xi}_s)$ starting from $(\xi_0, \dot{\xi}_0)$.

Then $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ –almost surely, there exists

- a random limiting angle $\Theta_{\infty} \in \mathbb{S}^2$,
- a random hypersurface $\Sigma(\Theta_{\infty}, \delta_{\infty})$,

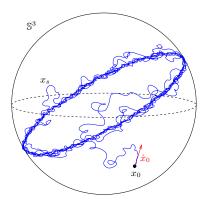
such that, as s goes to infinity, the process ξ_s goes to infinity in the direction Θ_{∞} along $\Sigma(\Theta_{\infty}, \delta_{\infty})$.

The case when
$$M=\mathbb{R}^3$$
 and $\int^T \frac{du}{\alpha(u)} < +\infty$



The case when
$$M=\mathbb{S}^3$$
 and $\int^T \frac{du}{\alpha(u)}=+\infty$

The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary



The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

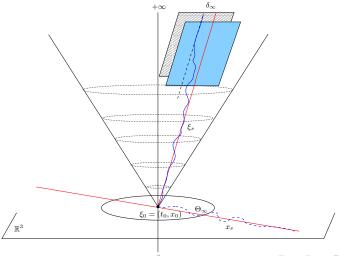
Concise (re)formulation with the help of the notion of causal boundary

The notion of causal boundary

A strongly causal Lorentz manifold \mathcal{M} admits a natural boundary $\partial \mathcal{M}_c = \partial \mathcal{M}_c^- \cup \partial \mathcal{M}_c^+$, called the *causal boundary*, composed of equivalence classes of causal curves (*i.e.* time-like or light-like curves).

In the case of Robertson-Walker space-times $\mathcal{M}=I\times_{\alpha}M$, this causal boundary was computed explicitly : it depends naturally on the expansion factor, the base interval I and the fiber M.

In Minkowski space-time, the causal boundary $\partial \mathcal{M}_c^+$ identifies with a cone $\mathbb{R}^+ \times \mathbb{S}^2$.



Theorem (reformulation of Bailleul's result)

Let $(\xi_0, \dot{\xi}_0)$ be a point in $T^1_+\mathbb{R}^{1,d} \simeq \mathbb{R}^{1,d} \times \mathbb{H}^d$ and $\mathbb{P}_{(\xi_0, \dot{\xi}_0)}$ the law of the relativistic diffusion $(\xi_s, \dot{\xi}_s)$ starting from $(\xi_0, \dot{\xi}_0)$.

Then $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ —almost surely, as s goes to infinity, the process ξ_s converges towards a random point $(\Theta_\infty,\delta_\infty)$ in $\partial\mathcal{M}_c^+$.

Theorem

Let $\mathcal{M}=(0,T)\times_{\alpha}M$ be a Robertson-Walker space-time. Let $(\xi_0,\dot{\xi}_0)$ be a point in $T^1_+\mathcal{M}$ and $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ the law of the relativistic diffusion $(\xi_s,\dot{\xi}_s)=(t_s,x_s,\dot{t}_s,\dot{x}_s)$ starting from $(\xi_0,\dot{\xi}_0)$. Then $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ -almost surely, as s goes to $\tau=\inf\{s>0,\,t_s=T\}$, the process ξ_s converges towards a random point in $\partial\mathcal{M}_c^+$.

- By proving the last theorem, we confirm a result conjectured by Franchi and Le Jan :
 - "the sample paths of the relativistic diffusion asymptotically follows random light-like geodesics".
- The different geometric situations are treated on a case by case basis, the proofs rely on fine stochastic analysis techniques.

Asymptotics of the normalized derivative

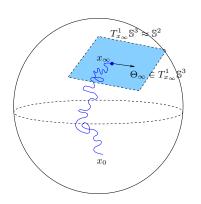
when
$$\int^T \frac{du}{\alpha(u)} < +\infty$$

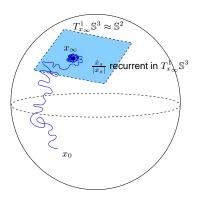
Theorem (Case when $\int^T 1/\alpha < +\infty$)

As s goes to $\tau=\inf\{s>0,\,t_s=T\}$, the spatial projection x_s converges a.s. toward a random point x_∞ of the fiber M and the normalized derivative $\dot{x}_s/|\dot{x}_s|$ satisfies :

- $ii) \ \ \text{if} \ T=+\infty \ \text{and the expansion is polynomial, then} \ \dot{x}_s/|\dot{x}_s| \ \ \text{converges towards} \ \Theta_\infty \ \text{in} \ T^1_{x_\infty}M \ ;$
- iii) if $T=+\infty$ and the expansion is exponential, then $\dot{x}_s/|\dot{x}_s|$ asymptotically follows a time-changed spherical Brownian motion in $T^1_{x_\infty}M\approx\mathbb{S}^2.$

The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary





Poisson boundary of the diffusion

A natural probabilistic question

Fact : on Robertson-Walker space-times, $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ -almost surely, as s goes to $\tau=\inf\{s>0,\,t_s=T\}$, the first projection ξ_s of the relativistic diffusion converges towards a random point in $\partial\mathcal{M}_c^+$.

Question : is the whole asymptotic stochastic information encoded in the random point on $\partial \mathcal{M}_c^+$?

The notion of Poisson boundary

The Poisson boundary of a process $X=(X_s)_{s\geq 0}$ can be defined equivalently as :

- the set $\operatorname{Harm}_b(\mathcal{L})$ of bounded \mathcal{L} -harmonic functions, where \mathcal{L} is the infinitesimal generator of X;
- the invariant σ -field Inv(X) of the process, composed of the events of the asymptotic σ -field

$$\bigcap_{t>0} \sigma\left(X_s, \ s>t\right),\,$$

that are invariant under the shifts $s \mapsto s + s'$, s' > 0.

The notion of Poisson boundary

The correspondence between $\mathrm{Inv}(X)$ and $\mathrm{Harm}_b(\mathcal{L})$ is explicit :

Y bounded r.v., measurable w.r.t. Inv(X)

$$\uparrow$$

$$h \in \operatorname{Harm}_b(\mathcal{L}), \ h(x) := \mathbb{E}_x(Y)$$

The notion of Poisson boundary

In particular, if $\operatorname{Inv}(X) = \sigma(\ell_{\infty})$ with $\ell_{\infty} \in \partial \mathcal{M}$, then

$$\operatorname{Harm}_b(\mathcal{L}) \simeq \mathbb{L}^{\infty}(\partial \mathcal{M}), \quad \text{via } h(x) = \mathbb{E}_x[F(\ell_{\infty})] \leftrightarrow F.$$

Fundamental example : if X is the killed BM in $\mathbb{D}=\{z\in\mathbb{C},\;|z|<1\},\;\operatorname{Inv}(X)=\sigma(\Theta_\infty)$ where $\Theta_\infty\in\partial\mathbb{D}=\mathbb{S}^1$ and

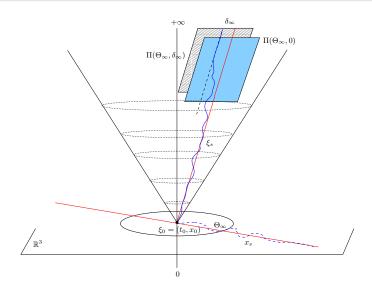
$$\operatorname{Harm}_b(\Delta_{\mathbb{D}}) \simeq \mathbb{L}^{\infty}(\mathbb{S}^1),$$

via
$$h(x) = \mathbb{E}_x[F(\Theta_\infty)] \leftrightarrow F$$
.

The case of Minkowski space-time

The case of Minkowski space-time

The case of Robertson-Walker space-times



Theorem (Bailleul, 2008)

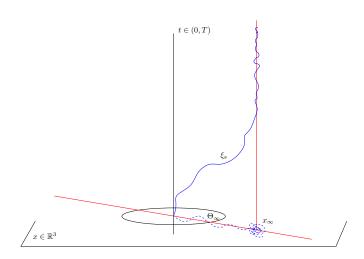
The invariant σ -field of the process $(\xi_s,\dot{\xi}_s)$ coincides $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ -almost surely with $\sigma(\Theta_\infty,\delta_\infty)$, the σ -field generated by the single variable $\ell_\infty=(\delta_\infty,\Theta_\infty)\in\partial\mathcal{M}_c^+\simeq\mathbb{R}^+\times\mathbb{S}^2$. Equivalently, one has

$$\operatorname{Harm}_b(\mathcal{L}) \simeq \mathbb{L}^{\infty}(\partial \mathcal{M}_c^+).$$

Robertson-Walker space-times

$$\mathcal{M} = (0, +\infty) \times_{\alpha} \mathbb{R}^3$$

where α has exponential growth.



Let $\mathcal{M}=(0,+\infty)\times_{\alpha}\mathbb{R}^3$ be a Robertson-Walker space-time where α has exponential growth.

Theorem

Let $(\xi_0,\dot{\xi}_0)\in T^1_+\mathcal{M}$ et let $(\xi_s,\dot{\xi}_s)=(t_s,x_s,\dot{t}_s,\dot{x}_s)$ be the relativistic diffusion starting from $(\xi_0,\dot{\xi}_0)$. Then $\mathbb{P}_{(\xi_0,\dot{\xi}_0)}$ -almost surely, the invariant σ -field of the process $(\xi_s,\dot{\xi}_s)$ coincides with $\sigma(x_\infty)$, the σ -field generated by the single variable $x_\infty\in\partial\mathcal{M}_c^+\simeq\mathbb{R}^3$. Equivalently, one has

$$\operatorname{Harm}_b(\mathcal{L}) \simeq \mathbb{L}^{\infty}(\partial \mathcal{M}_c^+).$$

A challenging question

If $\ensuremath{\mathcal{L}}$ is the infinitesimal generator of the relativistic diffusion on a general Lorentz manifold, do we have

$$\operatorname{Harm}_b(\mathcal{L}) \simeq \mathbb{L}^{\infty}(\partial \mathcal{M}_c^+)$$
?

The case of Minkowski space-time
The case of Robertson-Walker space-times