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Construction of a relativistic Brownian motion
Asymptotics of the relativistic diffusion
Poisson boundary of the diffusion

Motivations

There are deep links between the short-time and long-time
asymptotics of Brownian motion on a Riemannian manifold and
its geometry. This makes the heat kernel a powerfull tool in many
analytic and geometric problems.

Does there exists similar links in a Lorentzian setting ?

o What is a Brownian motion on a Lorentz manifold ?

o Does its study teach us something on the geometry of the
underlying manifold ?
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Relativistic diffusion in
Minkowski space-time
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

We denote by RY = {¢ = (¢9,¢') € R x R?} the Minkowski
space-time of special relativity, endowed with the metric :

d
9(&) = (&, &) = —1E"P + D I€'P,
=1

and by H the positive part of its unit pseudo-sphere :

H? = {¢ e RM |0 > 0and (¢,¢) = —1}
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Construction of a relativistic Brownian motion
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Basic facts on stochastic process

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

A continuggs stochastic process X, with values in a differentiable
manifold M, can be seen equivalently as :

@ arandom variable

X: (FP) - (CRY,M),B)
w = X(w) = (s X(W)(s) = Xs(w)),

and thus a probability measure on C'(R™, /\7) ;

o a family of probability measures (Pz)ze/ﬁ’ where the support

of P, is the set {f € C(R*, M), f(0) =z}, i.e. P, is the law
of sample paths starting at Xy = z.
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Geometric characterization of the Euclidian BM

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Proposition

Among the processes with values in R¢, the Brownian motion is
the unique process that satisfies the three following properties :

O it is Markovian;
O its sample paths are continuous;

0 its law is invariant under the action of Euclidian affine
isometries, i.e. V ¢ € Isom(RY), A measurable :

Po(A) =P:(z+ A), Po(4) =Po(¢(4)).



Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Theorem (Dudley, 1966)

There is no process with values in R4, being both
o Markovian;

O continuous;

o and whose law is Lorentz-covariant.
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time-like ¢ < 0

null vector or
light-like ¢ = 0

space-like ¢ > 0




Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold
Towards a relativistic

Question : does there exist a stochastic process with the following
properties ?

0 It is Markovian;

0 its sample path are continuous, future-directed and time-like,
0 its law is Lorentz-covariant.

i.e. they are continuous in M = T! R4 ~ R4 x H?;

Such a process will be called a relativistic Brownian motion or
simply a relativistic diffusion.
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Towards of relativisti

Theorem (Dudley, 1966)
There exist a unique process (§S,§S)S>0 with values in TlRl g

that satisfies the preceeding conditions, it is obtained by taklng
for 55 a Brownian motion in H? and its primitive

s =&+ /Osfudu-
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Conclusion of th

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

o Relativistic diffusions make sense at the level of the unitary
tangent bundle of a Lorentz manifold, not in the base space.

o By construction, the relativistic diffusion (¢, 53)320 is a conti-

nuous process in T}FRLd, hence its first projection (&5)s>0
with values in R4 has a C'! regularity.
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Relativistic diffusions on a
general Lorentz manifold
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Relativistic diffusion in Minkowski space-time

Construction of a relativistic Brownian motion
The case of a general Lorentz manifold

Asymptotics of the relativistic diffusion
Poisson boundary of the diffusion

Relativistic diffusions on a general Lorentz manifold

In 2007, Franchi and Le Jan extend Dudley’s work by construc-
ting, on a general Lorentz manifold M, a process (&, £5)s>0

o with values in T} M ;
@ which is Markovian and continuous;

o and whose law is Lorentz-covariant.

The process resulting from their construction we be simply called
relativistic diffusion in the sequel.



Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Geometric description of the

construction
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Generalization of Du

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

The relativistic diffusion is constructed as the projection of a dif-
fusion on the frame bundle G(M), using a kind of “vertical lift".

Equivalently, it is obtained starting from Dudley’s diffusion
fixed tangent space using stochastic parallel transport.

on a
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Geometric description of the relativistic diffusion

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Let M be a Lorentz manifold, (&, &) € TEM, and (&, &s)s>o the
process starting from (&, éo) resulting of the Franchi and Le Jan’s
construction.

Theorem / Definition (Franchi-Le Jan, 2007)

If ?(s) : Te,M — Ty M denote the inverse parallel transport
«— 5

along the C! curves (&, |0 < s’ < s),then (, := £ (s)& isan

hyperbolic Brownian motion in T, M ~ H<.



—— Dudley’s diffusion in T} M ~ H*

Relativistic diffusion
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Dynamical description
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Construction of a relativistic Brownian motion
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

The notion of infinitesimal generator

Fact : there is a correspondence between diffusion processes
(Xs)s>0 with values in a manifold M and differential operators
L, of order 2, acting on C*°(M, R).

The links between processes and operators is the following :

1) = 1),

S

Lf(x):= };%Ez [

Besides, (X;)s>0 is a solution of the stochastic differential equa-
tions system associated to L.



Generator

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

In the case on the relativistic diffusion (63753)320 with values in
T}rRl’d introduced by Dudley, the operator £ associated to the
process is given by :

LREE = 068 +5 Auif(EE)
geodesic flow

perturbation
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

By definition, the infinitesimal generator £ of the relativistic diffu-
sion introduced by Franchi and Le Jan decomposes into a sum :

1
L:=Ly+ 5 Ay,
where

0 Ly is the generator of the geodesic flow ;

o Ay is the vertical Laplacian.
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

By definition, the infinitesimal generator £ of the relativistic diffu-
sion introduced by Franchi and Le Jan decomposes into a sum :

1
L:=Ly+ 5 Ay,
where

0 Ly is the generator of the geodesic flow ;

o Ay is the vertical Laplacian.
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Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

Given a local chart £&* on (M, g,.), the relativistic diffusion on
T1 M is the solution of the stochastic differential equations sys-
tem :

gt = ¢lds,
%) |
dér = T8 (g )evénds + M)
with

5 Ehds 4 dMP,

A", M¥), = (€0 + g™ ) ds.
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Morality

Relativistic diffusion in Minkowski space-time
The case of a general Lorentz manifold

0 The relativistic diffusion on a general Lorentz manifold M
can be seen as the stochastic development of Dudley’s dif-
fusion in Minkowski space-time ;

0 The flow associated to its generator is a perturbation of the
geodesic flow on M by the vertical Laplacian.
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The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

Asymptotics of the

relativistic diffusion
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The case of Minkowski space-time
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Construction of a relativistic Brownian motion The case of Minkowski space-time
Asymptotics of the relativistic diffusion The case of Robertson-Walker space-times
Poisson boundary of the diffusion The notion of causal boundary

Theorem (Bailleul 08)
Let (£,&o) be a point in TLRM ~ RY4 x H and Pieo éo)
of the relativistic diffusion (&, £,) starting from (&, &).

the law

Then P(Eo éo)—almost surely, there exists
o arandom limiting angle O, € S?,
0 arandom plane II(O«, 00 ),

such that, as s goes to infinity, the process &; tends to infinity in
the direction O, along I1(O, doo)-




The case of Minkowski space-time

The case of Robertson-Walker space-times
The notion of causal boundary

Robertson-Walker
space-times
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Construction of a relativistic Brownian motion The case of Minkowski space-time
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Poisson boundary of the diffusion The notion of causal boundary

Robertson-Walker space-times

These spaces are cartesian products I x M where
i) I =(0,T)is an interval of R;
1) M is an homogeneous and isotropic Riemannian manifold,
i.e. M =S3 R3 ouH3.
endowed with a metric of the form :
ds? = —dt* + o (t)df*.

where « is a positive function on I and d¢? is the usual Rieman-
nian metric on M.

These manifolds, denoted by M := I x, M, are the natural geo-
metric framework for the theory of Big-Bang.



— Eternal expansion
R Big-Crunch

T < +o0
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Construction of a relativistic Brownian motion The case of Minkowski space-time
Asymptotics of the relativistic diffusion The case of Robertson-Walker space-times
Poisson boundary of the diffusion The notion of causal boundary

Existence, unigueness, lifetime

Proposition

Let M = (0,T) x, M be a Roberton-Walker space-time, and
(€0,€0) € TEM. The system (x) that defines the relativistic dif-
fusion admits a unique strong solution (gs,és) = (ts,Ts,ts, T5)
starting from (&, & ). This solution is defined up to the explosion
time 7 :=inf{s > 0, t; = T}.




The case of Minkowski space-time

The case of Robertson-Walker space-times
The notion of causal boundary

Asymptotics of the diffusion in

Robertson-Walker space-times
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Construction of a relativistic Brownian motion The case of Minkowski space-time
Asymptotics of the relativistic diffusion The case of Robertson-Walker space-times
Poisson boundary of the diffusion The notion of causal boundary

Theorem
Let (¢0,&o) be a point of TiM and P e o) the law of the relati-
vistic diffusion (&5, &) starting from (o, &o).
Then P(go,éo)—almost surely, there exists
o arandom limiting angle ©,, € S?,
o arandom hypersurface (0, 0o ),

such that, as s goes to infinity, the process & goes to infinity in
the direction O, along X (O, I )-
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The case when M = R? and / Bl < 400
a(u)
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The case of Minkowski space-time

The case of Robertson-Walker space-times
The notion of causal boundary

Concise (re)formulation with the help

of the notion of causal boundary
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Construction of a relativistic Brownian motion The case of Minkowski space-time
Asymptotics of the relativistic diffusion The case of Robertson-Walker space-times
Poisson boundary of the diffusion The notion of causal boundary

The notion of causal boundary

A strongly causal Lorentz manifold M admits a natural boundary
OM, = OM; UIM], called the causal boundary, composed of
equivalence classes of causal curves (i.e. time-like or light-like
curves).

In the case of Robertson-Walker space-times M = I x, M, this
causal boundary was computed explicitly : it depends naturally on
the expansion factor, the base interval I and the fiber M.



In Minkowski space-time, the causal boundary OM identifies
with a cone Rt x S2.




The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

Theorem (reformulation of Bailleul’s result)
Let (&, &) be a point in TLR™ ~ RY¢ x H¢ and P e, &) the law
of the relativistic diffusion (&, ;) starting from (&, &).

Then IP’(50 éo)—almost surely, as s goes to infinity, the process &;
converges towards a random point (O, dc0) IN OM .
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The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

Theorem

Let M = (0,T) xo M be a Robertson-Walker space-time. Let
(¢.&o) be a point in 71 M and P ¢, ) the law of the relativis-
tic diffusion (&,,&,) = (ts,xs, Ls, @) Starting from (&,&). Then
P, ¢, —@lmost surely, as s goes to 7 = inf{s > 0, t; = T}, the
process & converges towards a random point in oM.
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The case of Minkowski space-time
The case of Robertson-Walker space-times
The notion of causal boundary

o By proving the last theorem, we confirm a result conjectured
by Franchi and Le Jan :

“the sample paths of the relativistic diffusion asymptotically
follows random light-like geodesics”.

o The different geometric situations are treated on a case by
case basis, the proofs rely on fine stochastic analysis
techniques.
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Asymptotics of the normalized derivative

/T du
when — < 40
a(u)
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Construction of a relativistic Brownian motion The case of Minkowski space-time
Asymptotics of the relativistic diffusion The case of Robertson-Walker space-times
Poisson boundary of the diffusion The notion of causal boundary

Theorem (Case when |7 1/a < +o0)

As s goes to 7 = inf{s > 0, t; = T}, the spatial projection z
converges a.s. toward a random point z, of the fiber M and the
normalized derivative i /|2 | satisfies :

i) if T < oo, then i/|i,| converges towards O, € T, M ;

i7) if T'= +o0 and the expansion is polynomial, then & /||
converges towards O in T} M ;

iii) if T'= 400 and the expansion is exponential, then i, /|z|
asymptotically follows a time-changed spherical Brownian
motion in T} M ~ S2.







The case of Minkowski space-time
The case of Robertson-Walker space-times

Poisson boundary

of the diffusion
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A natural pro

The case of Minkowski space-time

The case of Robertson-Walker space-times

Fact : on Robertson-Walker space-times, P

(€0.60) —almost surely,
as s goesto 7 = inf{s > 0, t, = T}, the first prolectlon & of the
relativistic diffusion converges towards a random point in OM

Question

is the whole asymptotic stochastic information enco-
ded in the random point on OM} ?
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The case of Minkowski space-time
The case of Robertson-Walker space-times

The notion of Pois

The Poisson boundary of a process X = (X;)s>0 can be defined
equivalently as :

o the set Harm,(£) of bounded £—harmonic functions, where
L is the infinitesimal generator of X ;
o the invariant o—field Inv(X) of the process, composed of
the events of the asymptotic o—field
ﬂ o(Xs, s>1t),

t>0

that are invariant under the shifts s — s + s’, s’ > 0.
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The correspondence between Inv(X) and Harmy (L) is explicit

Y bounded r.v., measurable w.r.t. Inv(X)

«0O0>» «4F)>r « >




In particular, if Inv(X) = 0({) With 5, € OM, then

Harmy(£) ~ L*>*(OM),

via h(z) = Ey[F(ls0)] « F

Fundamental example : if X is the killed BM
iNnD ={zeC, |z2| <1}, Inv(X) = 0(O)
where 6, € D = S! and

Harmy(Ap) ~ L°(S!),
via h(z) = E;[F(O)] « F.




The case of Minkowski space-time
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The case of Minkowski space-time
The case of Robertson-Walker space-times

Theorem (Bailleul, 2008)

The invariant o—field of the process (&) coincides
P(go,éo)—almost surely with 0(0,, 0 ), the o—field generated by
the single variable /s, = (60, O0) € OMF ~ RT x S%. Equiva-
lently, one has

Harmy (L) ~ L>®°(OM]).
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The case of Minkowski space-time

The case of Robertson-Walker space-times

Robertson-Walker space-times

M = (0,4+00) x, R?

where o has exponential growth.
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Construction of a relativistic Brownian motion
Asymptotics of the relativistic diffusion
Poisson boundary of the diffusion

The case of Minkowski space-time
The case of Robertson-Walker space-times

Let M = (0, +00) x,R? be a Robertson-Walker space-time where
a has exponential growth.

Theorem
Let (€0,&0) € TEM et let (&,&) = (ts,xs,ts,45) be the relati-
vistic diffusion starting from (&, éo). Then ]P’(50 éo)—almost surely,

the invariant o—field of the process (&,, ;) coincides with o (24, ),
the o—field generated by the single variable z,, € OMI ~ R3.
Equivalently, one has

Harmy (L) ~ L>®°(OM]).




The case of Minkowski space-time

The case of Robertson-Walker space-times

A challenging question
If £ is the infinitesimal generator of the relativistic diffusion on a
general Lorentz manifold, do we have

Harm,(£) ~ L>®°(OMF) ?
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