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Notations and preliminaries :

a drop of complex analysis
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Let consider

J = {I'cC, I'isaJordan curve},
J* = {I'cC, I'isa C> Jordan curve}.
Facts :

ol'eJ «— 3¢:S!— C continuous and injective such that

¢(Sh) =T;

o Let h € Homeo(S!), then ¢ and ¢ o h are parametrizations
of the same Jordan curve I.
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o T splits the complex plane into two domains Df: and Dy :
FT

o LetD:={z € C, |2| < 1}, the Riemann mapping theorem
ensures that :

3 F*:D — D; biholomorphic,
3 F~ : D — D biholomorphic.
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o T splits the complex plane into two domains Df: and Dy
FT

o LetD:={z € C, |2| < 1}, the Riemann mapping theorem
ensures that :
IFt:D— D;F biholomorphic, unique mod SU(1, 1),
3 F~ : D — Dy biholomorphic, unique mod SU(1, 1)
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Poincaré group of automorphisms of the disk

restrictions to S of homographic transformations
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o By a theorem of Caratheodory, the maps F* extend to
homeomorphisms :

F+:ﬁ—>D—I'f, F_IEHD—I:;

0 in particular, Ffst1 define (canonical) parametrizations of T;
o we have

gr = (F7)to Ff e Homeo(S') (orientation preserving).
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Notations and preliminaries :

a touch of algebra




The Lie group D

Diff(S') := the group of C>, orientation preserving
diffeomorphisms of the circle
iff(S') := Lie algebra of right invariant vector fields on Diff(S')
~ (™ functions on S' via the identification
u € C*(S', R) «— vector field u-%;
Lie bracket given by [u, v]yist) := ud — v
0iffp(S") =

{u € viff(sh), % /Sl u(0)d = 0}
e
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The central extensions of Diff(S!), that is

1 - A - E? — Diff(S!) — 1, AcC Z(E)
or equivalently

0 — a — e? — (S — 0,
have been classified by Gelfand-Fuchs.
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They are of the form

Ven = R®0iff(S?),

and are associated to a fundamental cocyle on 0iff(S!) :

wentfoo) = [ [(n=15) 1 = 51" o 0.

where ¢, h > 0, via

[O{KZ + f, Bk + g]Vc,h = <“)c,iz(f) g)K’ + [f7 g]biff(Sl)'




Q Some probabilistic and algebraic motivations
2

Brownian motion on the diffeomorphism group of the circle
3

Brownian motion on the space of univalent functions
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Brownian motion on some quotient spaces
Representations of the Virasoro algebra

Define Brownian motions
on some natural quotient

spaces of Diff(S)
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Some probabilistic and algebraic motivations
Brownian motion on the diffeomorphism group of the circle
Brownian motion on the space of univalent functions

Brownian motion on the space of Jordan curves

Brownian motion on some quotient spaces
Representations of the Virasoro algebra

Theorem (Beurling-Ahlfors-Letho, ~ 1970, conformal welding)
The application

T — Diﬁ(Sl), I'—gr= (F_)_1 o F{é‘l

is surjective and induces a canonical isomorphism :

J>* — su(, 1)\Diff8") /sy (1, 1):

Idea : to construct a Brownian motion on J°°, a first step
consists in defining a Brownian motion on Diff(S') and pray that
the construction passes to the quotient!




The space of

Brownian motion on some quotient spaces
Representations of the Virasoro algebra

In the same spirit, consider

U® = {f € C®(D,C), funivalents.t. f(0) =0, £(0)

—1).

0
To f € U, one can associate I' = f(St) € 7> :

7
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Riemann mappi

Brownian motion on some quotient spaces
Representations of the Virasoro algebra

The Riemann mapping theorem provides a biholomorphic map-
ping h; such that

hf:C\ﬁHDIT,

h(o0) = oo.
It is unique up to a rotation of C\D, i.e. up to an element of S*
and extends to the boundary :

hy:C\D — Dy, hy(c0) = oo

Using this construction, we thus have an application

U — Diff(SY), frrgpi=f"to hf|Sl'
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Some probabilistic and algebraic motivations
Brownian motion on the diffeomorphism group of the circle
Brownian motion on the space of univalent functions

The space U* as a quotient of Diff(S!)

Brownian motion on some quotient spaces
Representations of the Virasoro algebra

Theorem (Kirillov, 1982)
The application

U™ - DiffS"), frgr=Ff"ohsg
induces a canonical isomorphism :
U*® — Diff(Sl)/S1.
Idea : as before, the construction of a Brownian motion on ¢/

appears closely related to the construction of a Brownian motion
on Diff(Sh)...




Brownian motion on some quotient spaces
Representations of the Virasoro algebra

Unitarizing measures and

representations

of the Virasoro algebra
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Some probabilistic and algebraic motivations
Brownian motion on the diffeomorphism group of the circle
Brownian motion on the space of univalent functions

Brownian motion on some quotient spaces
Representations of the Virasoro algebra

Facts :

o The theory of Segal and Bargmann shows that the infinite
dimensional Heisenberg group H has a representation :

H — End (Lj,(H,v)), u— p(u),

where H is an Hilbert space and v a Gaussian measure;

9 a similar Gaussian realization was proved by Frenkel in the
case of Loop groups.

Question :

Does there exists a space M, a measure y, and a representa-
tion of the Virasoro algebra of the following form ?

Vo — End (Lig (M), > plu)



Brownian motion on some quotient spaces
Representations of the Virasoro algebra

o Heuristics : M := Diff(S!)/SU(1,1) is a good candidate. It
carries a canonical Kéhlerign structure, associated to a Kéh-
ler potential K such that 00K = w., ;

0 heuristics again : the measure p should look like :

p = coexp (—K)dvol.

0 Idea : realize p as an invariant measure for a Brownian mo-
tion + drift on M, with infinitesimal generator :

G = %A — VKV.

Up to technical difficulties, this method works!
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1) Some probabilistic and algebraic motivations

Q Brownian motion on the diffeomorphism group of the circle
<

Brownian motion on the space of univalent functions

«O>» «Fr « =)»

int
v

DA



Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

Canonical horizontal diffusion




Horizontal diffusion

Canonical horizontal diffusion
Construction via regularization

An alternative pointwise approach

Given a differentiable structure M, the canonical way to define

a brownian motion on M is to do a stochastic development of a
diffusion living on the tangent space T M to M, that is :

@ first define a brownian motion on the tangent space TM ;

@ then “roll it without slipping” from T'M to M.

DA



_____ diffusion on the tangent space T'M

_____ diffusion on the underlying manifold M
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Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

Stochastic develo

Remarks :

@ the notion stochastic development, that is “roll without

slipping”, implies a pre-existing metric structure on the
manifold M, i.e.on T M ;

@ the resulting process on M will inherit from the invariance
properties of the metric choosen on T'M.
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To define a Brownian motion on Diff(S'), we thus have to :

@ choose a metric structure on Diff(S!);

@ construct a Brownian motion on 0iff(S');

@ roll it without slipping on Diff(S!) via the exponential
mapping.
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... If you have in mind to construct a Brownian

motion on the space of smooth Jordan curves...
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How to choose a

Canonical horizontal diffusion
Construction via regularization

An alternative pointwise approach

Theorem (Airault, Malliavin, Thalmaier)
There exists, up to a multiplicative constant, a unique Rieman-
nian metric on
. 1
su(1,1)\Piff(8)/su(1,1)

which is invariant under the left and right action of SU(1, 1).
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... If you have in mind to construct a Brownian

motion on the space of univalent functions...
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Some probabilistic and algebraic motivations Canonical horizontal diffusion
Brownian motion on the diffeomorphism group of the circle Construction via regularization
Brownian motion on the space of univalent functions An alternative pointwise approach

How to choose a metric on Diff(S!) ?

Theorem

There exists a canonical Kahler metric on />~ ~ Diff(S!)/S!,
i.e. on 2iff,(S!). It is associated to the fundamental cocycle w, j,
defining the Virasoro algebra :

|\u|\2 = we,p(u, Ju).

Here 0iffy(S') ~ {u € C>(S'), [s: udd = 0}, and
u(@) = ZZ“{ (ag cos(k@) + by sin(k0)) ,
Ju(f) = 21 (—ay sin(k0) + by, cos(k0)) ,
wen(u, Ju) = goi of (a2 4+03), of = (hk+ 5K —k)).



Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

o The metric ||.|| is invariant under the adjoint action of S!;

o the sequence «y, grows like &3/2, thus
(0iffo(SN), II.1) ~ HY*(S") ;

o an orthonormal system for (9iffy(S!), ||.||) is, for k > 1:
cos(k6
eap—1(0) == (&)

eml) = sin(k@).

€93
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Some probabilistic and algebraic motivations Canonical horizontal diffusion
Brownian motion on the diffeomorphism group of the circle Construction via regularization
Brownian motion on the space of univalent functions An alternative pointwise approach

Brownian motion on iff(S!)

Definition

The Brownian motion (u;)so on diff(S') (with H?3/2 structure) is
the solution of the following Stratonovitch SDE

du(6) =Y (egk_l(e) o dXF 1 ea(8) 0 dYtk) ,
k>1

where X* Y* k > 1 are independant, real valued, standard
Brownian motions.

Remark : almost surely, the above series converges uniformly
on [0,7] x St.




Stochastic developm

Canonical horizontal diffusion
Construction via regularization

An alternative pointwise approach

o The stochastic development of the diffusion (u;);>¢ on
0iff(S') to a Brownian motion g; on Diff(S') writes formally :

(*) dgt - (Odut) gt go = Ida
in other words
dgi =Y (€ean-1(g1) 0 X + ear(g1) o dY?) , go=1d
E>1
@ Problem :

the classical Kunita's theory of stochastic flow
works with a regularity H%/2*< for any ¢ > 0, but not in the
critical case H3/2.
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Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

Malliavin’s approach :

construction via regularization

o F = = = DA




Some probabilistic and algebraic motivations Canonical horizontal diffusion
Brownian motion on the diffeomorphism group of the circle Construction via regularization
Brownian motion on the space of univalent functions An alternative pointwise approach

Regularized Brownian motion on 2iff(S*)

Malliavin’s approach of the problem is to regularize the horizon-
tal diffusion, i.e. consider the following SDE for 0 < r < 1:

duf{(@) = Zk;Zl 7’]‘/)' (egk_l(e) o dth + egk(e) o ink) s
(%)r
dgi = (odui) g, g5 =1d.

Theorem (Airault, Malliavin, Thalmaier)

Forany 0 < r < 1, the equation (), admits a unique solu-
tion t — g7 € Diff(St). The limit g;(0) := lim,_ g7 (9) exists
uniformly in 6 and defines a solution of (x).

The limit g; € Homeo(S!) only!



Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

Alternative approach :

finite dimensional approximation
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Some probabilistic and algebraic motivations Canonical horizontal diffusion
Brownian motion on the diffeomorphism group of the circle Construction via regularization
Brownian motion on the space of univalent functions An alternative pointwise approach

The pointwise approach by S. Fang

Fang’s approach of the problem is to consider the following ap-
proximating SDE’s, forn > 1:

dup (0) = > 5_y (e2k—1(0) 0 dXF + e (0) 0 dY}F)

(*)n
dgy = (odu}') g7, gy = 1d.

Theorem (Fang)

For any n > 1, the equation (%), admits a unique solu-
tion t — g7 € Diff(S'). For # given, the limit g,(¢) :=
lim,,— 4~ g7 (0) exists uniformly in [0,7] and defines a solu-
tion of equation ().



Canonical horizontal diffusion
Construction via regularization
An alternative pointwise approach

The pointwise approach

Theorem (Fang)

There exists a version of g; such that, almost surely, ¢; €
Homeo(S*') for all t. Moreover, there exists ¢q > 0 such that

cot

|9¢(6) — g¢(0")| < Col6 — 6'|°

In other words, the mappings ¢: are J;-Holderian homeomor-
phisms with §; going to zero when t — +o0.

Morality : Brownian motion on Diff(S") with its H3/2 metric struc-
ture must be realized in the bigger space Homeo(S!).
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Some probabilistic and algebraic motivations
2

Brownian motion on the diffeomorphism group of the circle

Q Brownian motion on the space of univalent functions
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Beurling-Ahlfors extension
Stochastic conformal welding
Some properties of the resulting process

Brownian motion on the
space of univalent functions
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Some probabilistic and algebraic motivations Beurling-Ahlfors extension
Brownian motion on the diffeomorphism group of the circle Stochastic conformal welding
Brownian motion on the space of univalent functions Some properties of the resulting process

What a wonderful world...

We have defined a Brownian motion g, on the group of diffeor-
morphisms of the circle.

To construct a Brownian motion ¢; on I/*°, the space of univalent
functions, we would like to factorize ¢; thanks to the notion of
conformal welding :

gt = (o) o hy.

The classical theory of conformal welding is well developed for
diffeomorphisms of the circle that have a quasi-conformal exten-
sion to the unit disk.



Some probabilistic and algebraic motivations Beurling-Ahlfors extension
Brownian motion on the diffeomorphism group of the circle Stochastic conformal welding
Brownian motion on the space of univalent functions Some properties of the resulting process

What a wonderful world... or not

The class of diffeomorphisms preserving the point at infinity and
admitting a quasi-conformal extension to the half-plane is carac-
terized by the quasi-symmetry property :

h(0+6") —h(0)

sup < 00.
poest h(0) —h(0—0)

Theorem (Airault, Malliavin, Thalmaier)

Almost surely, the Brownian motion g; on Diff(S!) does not sa-
tisfy the above quasi-symmetry property :

lim sup sup log

1
h—0 +/log™ |h| (te[o,l},eeSI

gi(0+h)—g(0)]\ _ o
910 — 9@ — ) D s

o



From BM (Di

Beurling-Ahlfors extension

Stochastic conformal welding

Some properties of the resulting process

The problem : classical theory of conformal welding cannot be
applied directly here...
The solution :

@ extend the stochastic flow g; to a stochastic flow of
diffeomorphisms in the unit disk D ;

@ use conformal welding “inside” the disk, i.e. on a disk of
radius0 < p < 1;

@ pray and let p goesto 1...
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Beurling-Ahlfors extension
Stochastic conformal welding

Some properties of the resulting process

Beurling-Ahlfors extension
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Beurling-Ahlfors extension
Stochastic conformal welding
Some properties of the resulting process

Beurling-A

o Smooth vector fields on the circle are of the form w(0)d/d6
where u € C®(St) ~ C2(R).

o Given u € C>(S'), Beurling-Ahlfors extension provides a
vectorfieldUonH:={(=z+iy € C, y >0} via:

U(C) = Ul(z+iy) = /u(a:—sy)K(s)ds—Gi/u(w—sy)sK(s)ds,

where
K(s) = (1 —[s]) 1-11(s)-
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In Fourier series, if u(z)

_ “+o00o
- n=—oo

cne™ then
—+00

U)=U(x+1iy) = Z Cn (IA((ny) + GIA{/(ny)) e
where

n=—oo

«0O0>» «4F)>r « >




Beurling-Ahlfors

Beurling-Ahlfors extension

Stochastic conformal welding

Some properties of the resulting process

= exp(i¢), denote
log™ (a) = max{0, — log(a)}, and define
U(z) :=1i2U(Q)

—+o0
=1z

n=—oo

>~ o (K(nlog™(2))) + 6K (nlog™([2]) ) e

).

Consider the holomorphic chart { — =z

Proposition

Given u e 1.2(S'), the vector field U vanishes at the origin z = 0
an is C'! in the unit disk D.
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Beurling-Ahlfors extension
From the

Stochastic conformal welding

Some properties of the resulting process

We now apply the preceding machinery to the stochastic flow
(ug)¢>0 ON Viff(St). The complex version of u; simply writes

en(0) X1,
neZ\{0}

ind
en(6) = =

o Wit oy = (hinl+ 35l = nD)

X{", n # 0, are independant Brownian motions
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From the circle

Beurling-Ahlfors extension

Stochastic conformal welding

Some properties of the resulting process

o We thus obtain a flow (7,5 of C'! vector fields on the unit disk
D, vanishing at zero :

Ouz) =iz | D (Rinlog™(12]) + 6K (nlog™(|2]))) en(2) X}
n€eZ\{0}

t
o At this stage, it is possible (rhymes with technical) to control
the covariance of the resulting process, i.e. to control the
expectations E[U, (z)U; ()],

E[0U,(2)0U4(2")...
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Stochastic development again

It is then possible to integrate the development equation :

) d¥, = (odﬁt> T, Uy =1d

Theorem (Airault, Malliavin, Thalmaier)

The equation (%) defines a unique stochastic flow ¥, of C?,
orientation preserving, diffefomorphisms of the unit disk D. Mo-
reover,

lim U, (pew) = g,(6) uniformly in 6,
p—1

where g, is the solution of ().




Beurling-Ahlfors extension
Stochastic conformal welding

Some properties of the resulting process

Stochastic conformal welding

DA



Beurling-Ahlfors extension
Stochastic conformal welding
Some properties of the resulting process

Beltrami eq

Foro<p<1,letD,:= pDand

— if zcD,,
() =1 o, T2l
0 otherwise.

Let F/ be a solution of the following Beltrami equation, defined
on the whole complex place C :

OF?
a—Ftp(Z) = (2).
t

We normalize the solution s.t. 3. Ff(z) — 1 € LP, Ff(0) =0

DA
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Stochastic conformal welding

Theorem (Airault, Malliavin, Thalmaier)

Let ¥, the solution of equation (%), i.e. the extension of g, in the
unit disk. Define

fL(2) = Ff o (B)72(2), 2 € Ty(Dy),

t
9¢(2) == F{(2), 2 & Wy(Dp).
Then
£ is holomorphic and univalent on \T/t(]D)p),
g is holomorphic and univalent on (\T/t(]]])p)) )
and

(f) o gl(z) = Ty(2), =€ D,



Towards Brownian

Beurling-Ahlfors extension

Stochastic conformal welding

Some properties of the resulting process

We can now let p go to 1...

Theorem (Airault, Malliavin, Thalmaier)

For each 0 < r < 1, the following limit

éi(z) := lim ff

p—1
exists uniformly in z € D, and it defines an univalent function ¢,
in the unit disk D.
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A factorization of g; or almost

Consider the following extra assumption :
(H) ¢, is continuous and injective on D.

Theorem (Airault, Malliavin, Thalmaier)

Suppose that the function ¢, satisfies (H), then there exists a
function A; univalent outside the unit disk D such that :

(¢¢) " o hy (eie) = Gt <€i6> .

where g, is the solution of (x), i.e. the Brownian motion on
Diff(S1).




Beurling-Ahlfors extension
Stochastic conformal welding
Some properties of the resulting process

Some properties of the

resulting process
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Beurling-Ahlfors extension

Stochastic conformal welding

Area of the random

Some properties of the resulting process

Question : what is the growth of ¢;(D

50 0%

Theorem (Airault, Malliavin, Thalmaier)
t

Let A7 := area(F/(DD,)). Then, there exist constants ci, ¢z, c3,
independent of p < 1 such that
P| sup log(A?) — 1T >c+ R
t€[0,T]

> T

< exp (—03—) .
T

e
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Area of the rand

Beurling-Ahlfors extension

Stochastic conformal welding

Some properties of the resulting process

Question : what is the growth of ¢;(D

50 0%

Theorem (Airault, Malliavin, Thalmaier)

Let A, = area(¢:(ID)). Then, there exist constants c;, ¢, c3 S.t
]:P) <

sup log(A;) —e1T >c2+ R
te[0,T]

2
) < exp (—c;;%) .
e
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Beurling-Ahlfors extension
Stochastic conformal welding
Some properties of the resulting process

A diffusion on J

Theorem (Airault, Malliavin, Thalmaier)

Let ¢; be the stochastic flow of univalent functions defined

above. Thent — ¢;(S') defines a Markov process with values in
J, the space of Jordan curves.
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